首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5059篇
  免费   891篇
  国内免费   955篇
化学   5115篇
晶体学   73篇
力学   159篇
综合类   53篇
数学   111篇
物理学   1394篇
  2024年   3篇
  2023年   94篇
  2022年   191篇
  2021年   311篇
  2020年   375篇
  2019年   302篇
  2018年   255篇
  2017年   318篇
  2016年   395篇
  2015年   364篇
  2014年   438篇
  2013年   512篇
  2012年   447篇
  2011年   463篇
  2010年   290篇
  2009年   365篇
  2008年   295篇
  2007年   275篇
  2006年   223篇
  2005年   198篇
  2004年   158篇
  2003年   116篇
  2002年   71篇
  2001年   59篇
  2000年   60篇
  1999年   32篇
  1998年   31篇
  1997年   40篇
  1996年   31篇
  1995年   20篇
  1994年   19篇
  1993年   23篇
  1992年   14篇
  1991年   22篇
  1990年   12篇
  1989年   8篇
  1988年   7篇
  1987年   8篇
  1986年   10篇
  1985年   8篇
  1984年   12篇
  1983年   4篇
  1982年   17篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有6905条查询结果,搜索用时 42 毫秒
51.
Off the different types cancers 40% of the population have been observed to be affected by leukemia. Contemporary therapeutics is focusing on generation of new synthetic analogues that can exert maximum positive physiological effect with minimum dosage and negligible deleterious side effects. New generation pharmacists are focusing on such promising effects of Imatinib (a potential anti-cancer drug molecule), Dasatinib, Pelitinib and Nilotinib. The present research study focuses on novel synthesized anilides derivative against BCR-ABL kinase as potential anti-leukemic agent. Validation of the compounds by molecular docking with specific BCR-ABL kinase confirmed their activity. Toxicity prediction of these compounds helped to identify sustainability as therapeutic molecules. The IC50 values were calculated (211 ug, 175 ug, 272ug for compounds A, B, C resp.) and the mode of cell death was gauged by DNA laddering assay. The cells were observed to be induced for programmed cell death. By validating and in-vivo testing of three synthesized compounds, the compound B was observed to be more stable thermodynamically with a potentially vital active site and appears to be a promising anti-leukemic factor. The present research thus lays a preliminary platform in world of pharmaceutics, where these new analogues appear to be efficient, target specific and less toxic molecules.  相似文献   
52.
Nonfullerene acceptor based organic solar cells (NF-OSCs) have witnessed rapid progress over the past few years owing to the intensive research efforts on novel electron donor and nonfullerene acceptor (NFA) materials, interfacial engineering, and device processing techniques. Interfacial layers including electron transporting layers (ETL) and hole transporting layers (HTLs) are crucially important in the OSCs for facilitating electron and hole extraction from the photoactive blend to the respective electrodes. In this review, the lates progress in both ETLs and HTLs for the currently prevailing NF-OSCs are discussed, in which the ETLs are summarized from the categories of metal oxides, metal chelates, non-conjugated electrolytes and conjugated electrolytes, and the HTLs are summarized from the categories of inorganic and organic materials. In addition, some bifunctional interlayer materials served as both ETLs and HTLs are also introduced. Finally, the prospects of ETL/HTL materials for NF-OSCs are provided.  相似文献   
53.
Donor-acceptor type copolymers have wide applications in organic field-effect transistors and organic photovoltaic devices. Thieno[3,4-c]pyrrole-4,6-dione (TPD), as an electron-withdrawing unit, has been widely used in D-A type copolymers recently. Till now, the highest power conversion efficiency and mobility of TPD-based copolymers are over 8% and 1.0 cm2 V-1 s-1 respectively. In this review, the recent progress of TPD-based copolymers in organic solar cells and organic transistors is summarized.  相似文献   
54.
In perovskite solar cells and optoelectronics, perovskite film morphology controls the performance of the device. Various methods have been developed to control the morphology and coverage of the perovskite films. In this article platelet type perovskite morphlogy was synthesized using low temperature vacuum impregnation of the perovskite solution CH3NH3PbI3 resulting in complete coverage on TiO2 film. Vacuum impregnation synthesis of perovskites has the advantage of low cost and low temperature which faciliates application in flexible electronics and solar cells.  相似文献   
55.
Two conjugated copolymers PADT‐DPP and PADT‐FDPP based on anthradithiophene and diketopyrrolopyrrole, with thiophene and furan as the π‐conjugated bridge, respectively, were successfully synthesized and characterized. The number‐averaged molecular weights of the two polymers are 38.7 and 30.2 kg/mol, respectively. Polymers PADT‐DPP and PADT‐FDPP exhibit broad absorption bands and their optical band gaps are 1.44 and 1.50 eV, respectively. The highest occupied molecular orbital energy level of PADT‐DPP is located at ?5.03 eV while that of PADT‐FDPP is at ?5.16 eV. In field‐effect transistors, PADT‐DPP and PADT‐FDPP displayed hole mobilities of 4.7 × 10?3 and 2.7 × 10?3 cm2/(V s), respectively. In polymer solar cells, PADT‐DPP and PADT‐FDPP showed power conversion efficiency (PCE) of 3.44% and 0.29%, respectively. Atomic force microscopy revealed that the poor efficiency of PADT‐FDPP should be related to the large two‐phase separation in its active layer. If 1,8‐diiodooctane (DIO) was used as the solvent additive, the PCE of PADT‐DPP remained almost unchanged due to very limited morphology variation. However, the addition of DIO could remarkably elevate the PCE of PADT‐FDPP to 2.62% because of the greatly improved morphology. Our results suggest that the anthradithiophene as an electron‐donating polycyclic system is useful to construct new D–A alternating copolymers for efficient polymer solar cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1652–1661  相似文献   
56.
The first use of PSnb‐PEOmb‐PSn block copolymers (PS = polystyrene, PEO = poly(ethylene oxide)) as solid hosts for iodine/iodide electrolytes in dye‐sensitized solar cells (DSSCs) is described. Using the benchmark photosensitizer N719, DSSC based on the quasi solid‐state electrolytes afforded efficiencies up to 6.7%, to be compared with an efficiency of 7.3% obtained in similar conditions with a conventional iodine/iodide liquid electrolyte. By varying the PS:PEO relative volume ratio in the block copolymers different properties and morphologies were obtained. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 719–727  相似文献   
57.
Polymerization‐based signal amplification, a technique developed for use in rapid diagnostic tests, hinges on the ability to localize initiators as a function of interfacial binding events. We report here a new DNA detection method in which polymer growth in redox‐polymerization is used as a means to amplify detection signals. The introduction of biotin‐labeled chitosan (biotin‐CS) with highly dense amino groups into the polymerization amplification as macromolecular reducing agent, beneficially simplifies amplification operation, as well as, provides a large amount of initiation points to improve the sensitivity of detection. DNA hybridization, SA and biotin binding reactions led to the attachment of CS on a solid surface where specific DNA sequences were located. With the addition of the mixture containing monomer AM, crosslinker PEGDA and oxidant CAN onto the CS location, the growth of polymer films was triggered to render the corresponding spots readily distinguishable to the naked eye. Direct visualization of 0.21 fmol target DNA molecules of interest was demonstrated. Non‐small cell lung cancer p53 sequence was further selected as a proof‐of‐principle to detect DNA point mutation. The proposed method exhibited an efficient amplification performance for molecule detection, and paved a new way for visual diagnosis of biomolecules. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1929–1937  相似文献   
58.
Dye‐sensitized solar cells (DSSCs) have received significant attention from the scientific community since their discovery in 1991. However, the high cost and scarcity of platinum has motivated researchers to seek other suitable materials for the counter electrode of DSSCs. Owing to their exceptional properties such as high conductivity, good electrochemical activity, and low cost, carbon nanotubes (CNTs) have been considered as promising alternatives to expensive platinum (Pt) in the counter electrode of DSSCs. Herein, we provide a Minireview of the CNTs use in the counter electrode of DSSCs. A brief overview of Pt‐based counter electrodes is also discussed. Particular attention is given to the recent advances of counter electrodes with CNT‐based composite structures.  相似文献   
59.
Ruthenium polypyridine‐type complexes are extensively used sensitizers to convert solar energy into chemical and/or electrical energy, and they can be tailored through their metal‐to‐ligand charge‐transfer (MLCT) properties. Much work has been directed at harnessing the triplet MLCT state in photoinduced processes, from sophisticated molecular architectures to dye‐sensitized solar cells. In dye‐sensitized solar cells, strong coupling to the semiconductor exploits the high reactivity of the (hot) singlet/triplet MLCT state. In this work, we explore the nature of the 1MLCT states of remotely substituted RuII model complexes by both experimental and theoretical techniques. Two model complexes with electron‐withdrawing (i.e. NO2) and electron‐donating (i.e. NH2) groups were synthesized; these complexes contained a phenylene spacer to serve as a spectroscopic handle and to confirm the contribution of the remote substituent to the 1MLCT transition. [Ru(tpy)2]2+‐based complexes (tpy=2,2′:6′,2′′‐terpyridine) were further desymmetrized by tert‐butyl groups to yield unidirectional 1MLCTs with large transition dipole moments, which are beneficial for related directional charge‐transfer processes. Detailed comparison of experimental spectra (deconvoluted UV/Vis and resonance Raman spectroscopy data) with theoretical calculations based on density functional theory (including vibronic broadening) revealed different properties of the optically active bright 1MLCT states already at the Franck–Condon point.  相似文献   
60.
A single microbead‐based fluorescence imaging (SBFI) strategy that enables detection of protein kinase activity from single cell lysates is reported. We systematically investigated the ability of various rare earth (RE) ions, immobilized on the microbead, for specific capturing of kinase‐induced phosphopeptides, and Dy3+ was found to be the most prominent one. Through the efficient concentration of kinase‐induced fluorescent phosphopeptides on a Dy3+‐functionalized single microbead, kinase activity can be detected and quantified by reading the fluorescence on the microbead with a confocal fluorescence microscope. Owing to the extremely specific recognition of Dy3+ towards phosphopeptides and the highly‐concentrated fluorescence accumulation on only one microbead, ultrahigh sensitivity has been achieved for the SBFI strategy which allows direct kinase analysis at the single‐cell level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号